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Abstract: Fourier ptychography is a recently developed imaging approach for large field-of-
view and high-resolution microscopy. Here we model the Fourier ptychographic forward 
imaging process using a convolutional neural network (CNN) and recover the complex object 
information in a network training process. In this approach, the input of the network is the 
point spread function in the spatial domain or the coherent transfer function in the Fourier 
domain. The object is treated as 2D learnable weights of a convolutional or a multiplication 
layer. The output of the network is modeled as the loss function we aim to minimize. The 
batch size of the network corresponds to the number of captured low-resolution images in one 
forward/backward pass. We use a popular open-source machine learning library, TensorFlow, 
for setting up the network and conducting the optimization process. We analyze the 
performance of different learning rates, different solvers, and different batch sizes. It is shown 
that a large batch size with the Adam optimizer achieves the best performance in general. To 
accelerate the phase retrieval process, we also discuss a strategy to implement Fourier-
magnitude projection using a multiplication neural network model. Since convolution and 
multiplication are the two most-common operations in imaging modeling, the reported 
approach may provide a new perspective to examine many coherent and incoherent systems. 
As a demonstration, we discuss the extensions of the reported networks for modeling single-
pixel imaging and structured illumination microscopy (SIM). 4-frame resolution doubling is 
demonstrated using a neural network for SIM. The link between imaging systems and neural 
network modeling may enable the use of machine-learning hardware such as neural engine 
and tensor processing unit for accelerating the image reconstruction process. We have made 
our implementation code open-source for researchers. 
© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement 

OCIS codes: (100.4996) Pattern recognition, neural networks; (170.3010) Image reconstruction techniques; 
(170.0180) Microscopy. 
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1. Introduction

Many biomedical applications require imaging with both large field-of-view and high 
resolution at the same time. One example is whole slide imaging (WSI) in digital pathology, 
which converts tissue sections into digital images that can be viewed, managed, and analyzed 
on computer screens. To this end, Fourier ptychography (FP) is a recently developed coherent 
imaging approach for achieving both large field-of-view and high resolution at the same time 
[1–4]. This approach integrates the concepts of aperture synthesizing [5–11] and phase 
retrieval [12–18] for recovering the complex object information. In a typical microscopy 
setting, FP sequentially illuminates the sample with angle-varied plane waves and uses a low 
numerical aperture (NA) objective lens for image acquisition. Changing the incident angle of 
the illumination beam results in a shift of the light field’s Fourier spectrum at the pupil plane. 
Therefore, part of the light field that would normally lie outside the pupil aperture can now 
transmit through the system and be detected by the image sensor. To recover the complex 
object information, FP iteratively synthesizes the captured intensity images in the Fourier 
space (aperture synthesizing) and recover the phase information (phase retrieval) at the same 
time. The final achievable resolution of FP is determined by the synthesized passband at the 
Fourier space. As such, it is able to use a low-NA objective with a low-magnification factor to 
produce a high-resolution complex object image, combining the advantages of wide field-of-
view and high resolution at the same time [19–21]. 

The FP approach is also closely related to the real-space ptychography, which is a lensless 
phase retrieval technique originally proposed for transmission electron microscopy [14, 22–
24]. Real-space ptychography employs a confined beam for sample illumination and records 
the Fourier diffraction patterns as the sample is mechanically scanned to different positions. 
FP has a similar operating principle as real-space ptychography but switching the real space 
and the Fourier space using a lens [1, 20, 25]. The mechanical scanning of the sample in real-
space ptychography is replaced by the angle scanning process in FP. Despite the difference in 
hardware implementation, many algorithm developments of real-space ptychography can be 
directly applied in FP, including the sub-sampling scheme [26], the coherent-state 
multiplexing scheme [27, 28], the multi-slice modeling approach [29, 30], and the object-
probe recovering scheme [15, 31]. 

In this work, we model the Fourier ptychographic forward imaging process using a feed-
forward neural network model and recover the complex object information in a network 
training process. A typical feed-forward neural network consists of an input and output layer, 
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as well as multiple hidden layers in between. For a typical convolutional neural network 
(CNN), the hidden layers consist of convolutional layers, pooling layers, fully connected 
layers and normalization layers. In the network training process, a forward pass refers to the 
calculation of the loss function, where the input data travels through all layers and generates 
output values for the loss function calculation. A backward pass refers to the process of 
updating learnable weights of different layers based on the calculated loss function, and the 
computation is made from the last layer backward to the first layer. Different gradient-
descent-based algorithms can be used in the backward pass, including momentum, Nesterov 
accelerated gradient, Adagrad, Adadelta, RMSprop, and Adam [32]. The use of neural 
networks for tackling microscopy problems is a rapidly growing research field with various 
applications [33–37]. 

In our neural network models for FP, the input layer of the network is the point spread 
function (PSF) in the spatial domain or the coherent transfer function (CTF) in the Fourier 
domain. The object is treated as 2D learnable weights of a convolutional or a multiplication 
layer. The output of the network is modeled as the loss function we aim to minimize. The 
batch size of the network corresponds to the number of captured low-resolution images in one 
forward / backward pass. We use a popular open-source machine learning library, 
TensorFlow [38], for setting up the network and conducting the optimization process. We 
analyze the performance of different learning rates, different solvers, and different batch 
sizes. It is shown that a large batch size with the Adam optimizer achieves the best 
performance in general. To accelerate the phase retrieval process, we also discuss a strategy 
to implement Fourier-magnitude projection using a multiplication neural network model. 

Since convolution and multiplication are the two most-common operations in imaging 
modeling, the reported approach may provide a new perspective to examine many coherent 
and incoherent systems. As a demonstration, we discuss the extension of the reported 
networks for modeling single-pixel imaging and structured illumination microscopy. 4-frame 
resolution doubling is demonstrated using a neural network for structured illumination 
microscopy. The link between imaging systems and neural network models may enable the 
use of machine-learning hardware such as neural engine (also known as AI chips) and tensor 
processing unit [39] for accelerating the image reconstruction process. We have made our 
implementation code open-source for the interested readers. 

This paper is structured as follows: in Section 2, we discuss the forward imaging model 
for the Fourier ptychographic imaging process and propose a CNN for modeling this process. 
We then analyze the performance of different learning rates, different solvers, and different 
batch sizes of the proposed CNN. In Section 3, we discuss a strategy to implement the 
Fourier-magnitude projection using a multiplication neural network model. In Section 4, we 
discuss the extension of the reported approach for modeling single-pixel imaging and 
structured illumination microscopy via CNNs. Finally, we summarize the results and discuss 
the future directions in Section 5. 

2. Modelling Fourier ptychography using a convolutional neural network 

The forward imaging process of FP can be expressed as 

 ( ) ( )
2( ), ( , )* ( ,, )xn yni k x k y

nI x y O x y e PSF x y+= ⋅  (1) 

where ‘ ⋅ ’ denotes element-wise multiplication, ‘*’ denotes convolution, ( ),O x y  denotes the 

complex object, ( )xn yni k x k ye +  denotes the nth illumination plane wave with a wave vector 
( , )xn ynk k , ( ,PSF x y ) denotes the PSF of the objective lens, and ( ),nI x y  denotes the nth 

intensity measurement by the image sensor. The Fourier transform of ( , )PSF x y  is the CTF 

of the objective lens. For diffraction-limited imaging, we have 
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=
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where L1-norm is used to measure the difference between the prediction and the actual 
measurement, and ‘batchSize’ corresponds to the number of images in one forward / 
backward pass. If the batch size equals to 1, it is stochastic gradient descent with the gradient 
evaluated by a single image at one forward / backward pass. If the batch size equals to the 
total number of measurements, it is similar to using Wirtinger derivatives and gradient 
descent scheme to recover the complex object [40], except that we use L1-norm in Eq. (6) 
(the difference between L1 / L2 norms will be discussed in a later section). 

 

Fig. 2. (a) High-resolution amplitude and phase images for simulation. (b) The output of the 

CNN based on (a) and different wave vector ( ,xn ynk k )s. 

We first analyze the performance using simulation. Figure 2(a) shows the high-resolution 
object amplitude and phase. Figure 1(b) shows the CNN output for the low-resolution 
intensity images with different wave vector ( ,xn ynk k )s. In this simulation, we use 15 by 15 

plane waves for illumination and 0.1 NA objective lens to acquire images. The step size for 

xnk  and ynk  is 0.05, and the maximal synthetic NA is ~0.64. The pixel size in this simulation 

is 0.43 µm for the high-resolution object and 1.725 µm for the low-resolution measurements 
at the object plane (assuming magnification factor is 1). The use of these parameters is to 
simulate a microscope platform with 2X, 0.1 NA objective and an image sensor with 3.45 µm pixel 
size. 

In Fig. 3, we show the recovered results with different learning rates. The Adam optimizer 
is used in this simulation. This optimizer is a first-order gradient-based optimizer using 
adaptive estimates of lower-order moments [41]. It combines the advantages of two 
extensions of stochastic gradient descent Adaptive Gradient Algorithm (AdaGrad) and Root 
Mean Square Propagation (RMSProp) [41], and it is the default optimizer for many deep 
learning problems. 

 

Fig. 3. Different learning rates of the Adam optimizer in TensorFlow for the training process. 
(a)-(d) The recovered complex object images with learning rates ranging from 0.003 to 10. (e) 
The L1 loss (in log scale) as a function of epochs. A higher learning rate can decay the loss 
faster but gets stuck at a worse value of loss. This is because there is too much ‘energy’ in the 
optimization process and the learnable weights are bouncing around chaotically, unable to 
settle in a nice spot in the optimization landscape. 

Different learning rates in Fig. 3 represent different step sizes of the gradient descent 
approach. We can see that a higher learning rate can decay the loss faster but gets stuck at a 
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worse value of loss. This is because there is too much ‘energy’ in the optimization process 
and the learnable weights are bouncing around chaotically, unable to settle in a nice spot in 
the optimization landscape. On the other hand, a lower learning rate is able to reach a lower 
minimum point in a slower process. A straight-forward approach for a better learning-rate 
schedule is to use a large learning rate at the beginning and reduce it for every epoch. How to 
schedule the learning rate for FP is an interesting topic and requires further investigation in 
the future. 

 

Fig. 4. Performance of different solvers in TensorFlow: (a) Adam, (b) RMSprop, (c) SGD, and 

(d) SGDM. We use 5 by 5 plane waves for sample illumination and the step size for xnk  and 

ynk  is 0.15 in this simulation. The recovered amplitude ((a1)-(d1)) and phase ((a2)-(d2)) with 

500 epochs (the best learning rates are chosen in this simulation). Different color curves in 
(a3)-(d3) represent different learning rates and the loss is in log scale. Adam gives the best 
performance overall. Batch size is 1 in this simulation. 

 

Fig. 5. Performance of different batch sizes as a function of epoch. (a)-(d) The recovered 
object for different batch sizes and with 20 epochs. (e) The loss (in log scale) with different 
batch sizes. 

In Fig. 4, we compare the performance of different optimizers in TensorFlow and show 
their corresponding recovered results. We note that all optimizers give similar results if the 
step size for xnk  and ynk  is small (i.e., aperture overlap is large in the Fourier domain). In this 

simulation, we use 5 by 5 plane wave illumination with 0.15 step size for xnk  and ynk . Other 
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parameters are the same as before. Figure 4 shows that Adam achieves the best performance 
and stochastic gradient descent (SGD) is the worst among the 4. Stochastic gradient descent 
with momentum (SGDM) is the second-best option. This justifies the adding of momentum in 
the recent ptychographical iterative engine [42]. 

In Fig. 5, we investigate the effect of different batch sizes for the optimization process. 
We can see that batch size of 1 gives the best performance in Fig. 5(a). This justifies the 
stochastic gradient descent scheme used in the extend ptychography iterative engine (ePIE) 
[15]. 

 

Fig. 6. Performance of different batch sizes as a function of the updating times. (a)-(d) The 
recovered object for different batch sizes and with 20 updating times. (e) The loss curves (in 
log scale) with different batch sizes. 

However, one advantage of using TensorFlow library is to perform parallel processing via 
graphics processing unit (GPU) or tensor processing unit (TPU). As a reference point, a 
modern GPU can handle hundreds of images in one patch. When we use a large batch size, 
the processing time is about the same as that of batch size = 1. For example, the batch size is 
1 in Fig. 5(a) and the epoch number is 20; therefore, we update the object with 225*20 times 
in this simulation. On the other hand, the batch size is 64 in Fig. 5(d) and the epoch number is 
20; therefore, we update the object with (225/64)*20 times for this figure. We define ‘number 
of updating times’ as the number of epochs divided by the batch size. This ‘number of 
updating times’ is directly related to the processing time of the recovery process. 

In Fig. 6(a)-6(d), we show the recovered results with the same number of updating times. 
In this case, we can see a large batch size leads to a better performance. Based on Figs. 5 and 
6, we can draw the following conclusion: batch size of 1 is preferred for serial operation via 
CPU and a large batch size is preferred for parallel operation using GPU or TPU. 

3. Modelling Fourier-magnitude projection in neural network 

All widely used iterative phase retrieval algorithms have at their core an operation termed 
Fourier-magnitude projection (FMP), where an exit complex wave estimate is updated by 
replacing its Fourier magnitude with measured data while keeping the phase untouched. In 
this section, we discuss the implementation of FMP in neural network modeling. The 
motivation is to implement many existing phase retrieval algorithms via neural network 
training processes. We demonstrate it with FP and it can be easily extended for other phase 
retrieval problems. 

In the Fourier ptychographic imaging process, the exit complex wave  ( ),n x yk kϕ  in the 

Fourier domain can be expressed as 

  ( )  ( ), , CTF ( , ),n x y x y n x yk k O k k k kϕ = ⋅  (7) 
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mean square error (MSE) in Fig. 8(e). We can see that the cases of ‘L1 intensity’ and ‘L2 exit 
wave’ give the best results. In particular, ‘L2 exit wave’ converges faster at the first few 
epochs while ‘L1 intensity’ reaches a lower MSE with more iterations. We also note that the 
intensity updating cases tend to recover the low-resolution features first while the exit-wave 
updating cases tend to recover features at all levels. This behavior can be explained by the 
loss functions in Eqs. (6) and (9). The loss function in Eq. (6) is to reduce the difference 
between two intensity images in the spatial domain. Therefore, it tends to correct the low-
frequency difference first since most energy concentrates in this region. On the other hand, 
the loss function in Eq. (9) is to reduce the difference between two Fourier spectrums and it 
does not focus on the low-frequency regions. As such, the resolution improvement is more 
obvious for the exit-wave updating cases shown in Fig. 8(c). 

 

Fig. 8. Comparison of different cases with batch size = 1. The learning rates are chosen based 
on the fastest loss decay in 10 epochs. The Adam optimizer is used for all cases in this 
simulation study. (a) Minimizing the loss function in Eq. (6) with L2-norm, termed ‘L2 
intensity’. (b) Minimizing the loss function in Eq. (6) with L1-norm, termed ‘L1 intensity’. (c) 
Minimizing the loss function in Eq. (9) with L2-norm, termed ‘L2 exit wave’. (d) Minimizing 
the loss function in Eq. (9) with L1-norm, termed ‘L1 exit wave’. The resolution improvement 
is more obvious for the exit-wave cases. (e) The performances of different approaches are 
quantified using MSE. 

In Fig. 9, we test the L2-norm exit-wave network using experimental data. Figure 9(a) 
shows the experimental setup where we use a 2X, 0.1 NA Nikon objective with a 200 mm 
tube lens (Thorlabs TTL200) to build a microscope platform. A 5-megapixel camera (BFS-
U3-51S5M-C) with a 3.45 µm pixel size is used to acquire the intensity images. We use an 
LED array (Adafruit 32 by 32 RGB LED matrix) to illuminate the sample from different 
incident angles and the distance between the LED array and the sample is ~85 mm. In this 
experiment, we illuminate the sample from 15 by 15 different incident angles and the 
corresponding maximum synthetic NA is ~0.55. Figure 9(b1)-9(d1) show the low-resolution 
images captured by the microscope platform in Fig. 9(a). We use the L2-norm exit-wave 
network with the Adam optimizer to recover the complex object spectrum in the 
multiplication layer. The batch size in this experiment is 1 and we use 20 epochs in the 
network training (optimization) process. The recovered object intensity images are shown in 
Fig. 9(b2)-9(d2) and the recovered phase images are shown in Fig. 9(b3)-9(d3). As a 
comparison, we also show the standard FPM reconstructions [19] in Fig. 9(b4)-(d4) and 
9(b5)-(d5). Figure 9 validates the effectiveness of reported neural network models. 
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Fig. 9. Test the L2-norm exit-wave network with experimental data. We use Adam optimizer 
with 20 epochs in this experiment and the batch size is 1. (a) The experimental setup with a 
2X, 0.1 NA objective lens and a 3.45 µm pixel size camera, which is the same as the 
simulation setting. We test three different samples: (b) a blood smear, (c) a brain slide, and (d) 
a tissue section stained by immunohistochemistry methodology. (b1)-(d1) show the captured 
raw images using the 2X objective lens. The recovered intensity images using neural network 
are shown in (b2)-(d2) and the recovered phase images are shown in (b3)-(d3). As a 
comparison, (b4)-(d4) and (b5)-(d5) show the standard FPM reconstructions for intensity and 
phase [19]. 

4. Extensions for single-pixel imaging and structured illumination microscopy 

In this section, we extend the network models discussed above for single-pixel imaging and 
structured illumination microscopy. Single pixel imaging captures images using single-pixel 
detectors. It enables imaging in a variety of situations that are impossible or challenging with 
conventional 2D image sensors [44–46]. The forward imaging process of single-pixel 
imaging can be expressed as 

 
,

( , ) ( , ),n nx y
I O x y P x y= ⋅  (10) 

where ( ,O x y ) denotes the 2D object, ( , )nP x y  denotes the nth 2D illumination pattern on the 

object, and nI  denotes the nth single-pixel measurement. The summation sign in Eq. (10) 

represents the signal summation over the x-y plane. Since the dimensions of the object and 
pattern are the same, the forward imaging model in Eq. (10) can be modeled by a ‘valid 
convolutional layer’ which outputs a predicted single-pixel measurement. The CNN model 
for single-pixel imaging is shown in Fig. 10(a). The training of this model is to minizine the 
following loss function: 
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Fig. 11. 4-frame resolution doubling using the CNN-based SIM model. (a) The object image 
under uniform illumination. (b) The 4 SIM measurements using 4 sinusoidal patterns for 
sample illumination. The resolution doubled image recovered by the training process of the 
CNN in Fig. 10(b). 

5. Summary and discussion 

In summary, we model the Fourier ptychographic forward imaging process using a 
convolutional neural network and recover the complex object information in the network 
training process. In our approach, the object is treated as 2D learnable weights of a 
convolutional or a multiplication layer. The output of the network is modeled as the loss 
function we aim to minimize. The batch size of the network corresponds to the number of 
captured low-resolution images in one forward / backward pass. We use the popular open-
source machine learning library, TensorFlow, for setting up the network and conducting the 
optimization process. We show that the Adam optimizer achieves the best performance in 
general and a large batch size is preferred for GPU / TPU-based parallel processing. 

Another contribution of our work is to model the Fourier-magnitude projection via a 
neural network model. The Fourier-magnitude projection is the most important operation in 
iterative phase retrieval algorithms. Based on our model, we can easily perform exit-wave-
based optimization using TensorFlow. We show that L2-norm is preferred for exit-wave-
based optimization while L1-norm is preferred for intensity-based optimization. 

Since convolution and multiplication are the two most-common operations in imaging 
modeling, the reported approach may provide a new perspective to examine many coherent 
and incoherent systems. As a demonstration, we discuss the extensions of the reported 
networks for modeling single-pixel imaging and structured illumination microscopy. We 
show that single-pixel imaging can be modeled by a convolutional layer implementing ‘valid 
convolution’. For structured illumination microscopy, we propose a network model with one 
multiplication layer and one convolutional layer. In particular, we demonstrate 4-frame 
resolution doubling via the proposed CNN. Since the proposed network model can be 
implemented in neural engine and TPU, we envision many opportunities for accelerating the 
image reconstruction process via machine-learning hardware. 

There are many future directions for this work. First, we can implement the CTF updating 
scheme in the proposed neural network models. One solution is to make the incident wave 
vector as the input and we can then convolute the CTF with δ( ,xn ynk k ) to generate CTFn. In 

this case, we can model CTF as learnable weights in a convolutional layer and it can be 
updated in the network training process. Second, correcting positional error is an important 
topic for real-space ptychographic imaging. The positional errors in real-space ptychography 
is equivalent to the errors of incident wave vectors in FP. We can, for example, model (

,xn ynk k ) as learnable weights in a layer and they can be updated in the network training 

process. Similarly, we can also generate CTF based on coefficients of different Zernike 
modes and model such coefficients as learnable weights. Third, the proposed network models 
are developed for one coherent state. It is straight forward to extend our networks to model 
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multi-state cases. Fourth, we use a fixed learning rate in our models. How to schedule the 
learning rates for faster convergence is an interesting topic and requires further investigations. 
Fifth, we can add regularization term such as total variation loss in the model to better handle 
the measurement noises. 

We provide our implantation code in in the format of Jupyter notebook [Code 1, 52]. 
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